Parameterized Metatheory for Continuous Markovian Logic
نویسندگان
چکیده
This paper shows that a classic metalogical framework, including all Boolean operators, can be used to support the development of a metric behavioural theory for Markov processes. Previously, only intuitionistic frameworks or frameworks without negation and logical implication have been developed to fulfill this task. The focus of this paper is on continuous Markovian logic (CML), a logic that characterizes stochastic bisimulation of Markov processes with an arbitrary measurable state space and continuous-time transitions. For a parameter ε > 0 interpreted as observational error, we introduce an ε-parameterized metatheory for CML: we define the concepts of ε-satisfiability and ε-provability related by a sound and complete axiomatization and prove a series of “parameterized” metatheorems including decidability, weak completeness and finite model property. We also prove results regarding the relations between metalogical concepts defined for different parameters. Using this framework, we can characterize both the stochastic bisimulation relation and various observational preorders based on behavioural pseudometrics. The main contribution of this paper is proving that all these analyses can actually be done using a unified complete Boolean framework. This extends the state of the art in this field, since the related works only propose intuitionistic contexts that limit, for instance, the use of the Boolean logical implication.
منابع مشابه
Continuous Markovian Logics - Axiomatization and Quantified Metatheory
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates of the exponentially distributed random variables that characterize the duration of the labeled transitions...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM
In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کامل(Dual) Hoops Have Unique Halving
Continuous logic extends the multi-valued Lukasiewicz logic by adding a halving operator on propositions. This extension is designed to give a more satisfactory model theory for continuous structures. The semantics of these logics can be given using specialisations of algebraic structures known as hoops and coops. As part of an investigation into the metatheory of propositional continuous logic...
متن کاملA Partially Observable Markovian Maintenance Process with Continuous Cost Functions
In this paper a two-state Markovian maintenance process where the true state is unknown will be considered. The operating cost per period is a continuous random variable which depends on the state of the process. If investigation cost is incurred at the beginning of any period, the system wit I be returned to the "in-control" state instantaneously. This problem is solved using the average crite...
متن کامل